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Links

piquant code repository

https://github.com/lweasel/piquant

piquant documentation

http://piquant.readthedocs.org/en/latest/index.html

Simpson group site

http://www.iansimpson.me

Stages of the piquant pipeline

1. Simulation
piquant uses the Flux Simulator [1] RNA-seq experiment simulator to generate sets of 
RNA-Seq data.  

2. Quantification
For each set of RNA-seq data, simulated reads are mapped to the genome or 
transcriptome, and quantification tools estimate transcript abundances.    

3. Analysis
For each set of RNA-seq data and each quantification tool, estimated transcript 
abundances are compared with the ground truth values for accuracy, and a rich collection 
of statistics and graphs are automatically generated.  
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Transcript quantification: tools run in quantification mode only
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Log ratios of estimated to real TPMs: Cufflinks, true positives
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Ground truth abundance comparison and analysis

Transcript 
reference

Simulated RNA-seq 
data sets

Transcript abundance 
estimates

Statistics
piquant calculates a range of statistics and draws graphs to aid the assessment of 
transcript quantification performance. Additional statistics, and their resultant graphs, are 
easily added with just a few lines of code.
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Spearman's 𝜌:
the rank correlation coefficient 
between estimated and ground 

truth abundances

Error fraction: the fraction of 
transcripts whose estimated 

abundance is >10% higher or lower 
than the ground truth value

Sensitivity and specificity: the 
proportion of transcripts 

correctly identified as being 
present or not
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Classification of transcripts
Classifiers split the whole set of input transcripts into discrete groups sharing similar 
properties. Such divisions allow quantification performance to be assessed across 
different types of transcript. Again, additional classifiers are added with a few lines of 
code.

Transcript prevalence:
Quantification accuracy is better 
for isoforms with high abundance 

than rare, lowly-expressed 
transcripts
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Isoforms per gene:
Quantification accuracy decreases 
as the number of transcripts per 

gene grows

Transcript length:
Quantification accuracy is better 

for long transcripts than for 
shorter isoforms
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Quantification tools
Out of the box, piquant runs four mapping and quantification pipelines: TopHat+Cufflinks, 
Bowtie+RSEM, Bowtie+eXpress, and the alignment-free Sailfish algorithm. Additional 
pipelines are easy to add, or the current configurations edited to test alternate optional 
parameter choices.  
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piquant allows the relative 
strengths of quantification 
pipelines to be assessed as 

sequencing parameters change

For Cufflinks and eXpress, paired-
end reads improve quantification 
accuracy over single-end reads

However, for RSEM and Sailfish this 
benefit is less consistent or not 

present 
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Challenges and next steps
An abiding risk when using simulated data is its potential failure to truly capture the 
characteristics of real experiments: here, the analyses produced by piquant will be of 
limited value if their verdicts about quantification tool performance fail to translate to the 
real world. An additional problem in the assessment of transcript quantification from RNA-
seq is the relative paucity of gold-standard experimental data by which to tests our 
conclusions. One such data set, produced as part of the MAQC project [8], consists of 
~1000 gene abundances measured by TaqMan PCR for two reference RNA samples.

While noting that the relation between quantification accuracy at the level of genes and 
transcripts is itself not necessarily straightforward, we compared the performance of 
quantification tools on both simulated and TaqMan-validated RNA-seq data. In 
consequence, we will next investigate the effect on quantification of the following 
improvements to the RNA-seq simulation model:
                • a biologically-realistic distribution of gene abundances
                • reads arising from transcripts not present in the reference
                • reads arising from chimeric transcripts

RNA-sequencing has become an important technique in cellular biology for characterising and quantifying the transcriptome, and many computational methods have been developed 
to reconstruct transcripts from RNA-seq data and then estimate their abundances. Gene expression estimates calculated by these methods have been shown to be relatively robust. 
However, for transcript quantification, complications arising from the ambiguous origin of short RNA-seq reads and from bias in their sequence composition are compounded, and thus 
estimates of isoform abundance may be less accurate. It is therefore important to be able to assess the conditions under which different transcriptome quantification tools perform 
well or more poorly, and how the many optional parameter choices available for each tool may affect their performance.

piquant is a pipeline of Python scripts to help assess the accuracy of transcriptome quantification by such tools. In its first stage, RNA-seq reads are simulated from a starting set of 
transcripts under specified combinations of sequencing parameters: for example, different read lengths and sequencing depths, single- and paired-end reads, reads with or without 
sequencing errors, and reads with or without sequence bias. In the second stage, a number of transcriptome quantification tools (or the same tool with different optional parameter 
choices) estimate isoform abundances for each set of simulated reads. Finally, the isoform expression estimates calculated by each tool for each RNA-seq data set are compared to 
the known transcript abundances used to generate the reads. The comparative accuracy of estimates calculated by each tool can then be assessed as sequencing parameters are 
changed, or for different groups of transcripts segregated by particular transcript classification measures, via a range of automatically generated statistics and graphs.


